Certificates of Analysis
Device Compatibility Matrix
Instructions Fro Use
Medivators Hookup Guide
Safety Data Sheets
Contact Form
Get a Quote or Information
Healthcare Live Chat
Locate Your STERIS Representative
United States
Canada (EN)
Canada (FR)
United Kingdom
Europe, Middle East and Africa
Australia
Singapore
Asia-Pacific
Brasil
México
América Latina
September 27, 2018
An enzymatic cleaner is used in healthcare facilities to aid in the cleaning and decontamination of medical devices and other medical equipment and utensils. Enzymatic cleaners used in the Endoscopy and Sterile Processing Departments may be better known as enzymatic detergents, because they contain surfactants designed to lift soils from devices.
Enzymatic cleaners contain enzymes, which help to break down soils at a neutral pH (typically pH 6-8). There can be various types of enzymes in enzymatic cleaners, such as proteases, amylases, and lipases which break down various types of soils. All types of enzymes belong to a class of compounds called proteins. Proteins, and thus enzymes, are complex molecules comprised of amino acids that are joined together by peptide bonds.
The complex structure of an enzyme requires less energy to be expended in any reaction that breaks down soils. This can be likened to driving through a mountain using a tunnel rather than traversing up and over the mountain. Either way, you get to the other side but with the tunnel, the journey is much easier.
With or without an enzyme, the same reaction (soil break down) takes place. When using an enzyme, the energy used to break down the soil is lower, and the reaction takes place more quickly. This speeding up and reducing the amount of energy needed for a reaction to take place is known as catalysis, so enzymes act as catalysts for these reactions.
Enzymatic cleaners have various benefits in the cleaning process of medical devices and instruments including:
The first stage within the reprocessing/decontamination cycle starts at point-of-use within the procedure room. A point-of-use product is typically used to keep soils from drying and becoming harder to clean after transport to the processing area. Although some point-of-use products contain enzymes, it is important to follow the manufacturer's Instructions for Use to avoid injury to staff/patients. Effective enzymes break down proteins, including those still on or in a living organism. This ability to break down proteins can thus raise a concern about inhalation of enzymes, which results in the need for caution in the spraying/aerosolization of products containing enzymes.
After an instrument tray or an endoscope is transported to the processing area, it first undergoes manual cleaning. This process usually requires a 2-3 bay sink, which ideally includes pre-soak, clean, and rinse phases. The pre-soak and rinse phases can utilize tap water alone, but ideally, the presoak and cleaning phases utilizes an enzymatic detergent. The enzymes break down surgical soils, while the SPD Technician manually cleans the instruments using an accessory such as a brush. After the instruments are manually cleaned, medical devices are either transported to the ultrasonic washer, an automated washer/disinfector or an Endoscope Reprocessor (AER).
If the medical devices require ultrasonic washing, an enzymatic cleaner is used during the cleaning cycle, while the ultrasonic cavitation allows for thorough medical device cleaning. If the instrument does not require ultrasonic washing, the item is transported to the automated washer/disinfector where it undergoes a series of phases within each cycle. After the initial pre-wash phase used for gross soil removal, an enzymatic detergent is typically used in the first wash phase to break down remaining adherent soils. The second phase typically utilizes a neutral /alkaline detergent, which further breaks down organic and inorganic soils and is followed by a rinse. An automated washer/disinfector also provides thermal disinfection which renders a device "safe to handle" and can move it through to the clean side of a sterile processing department.
Explore our Instrument Cleaning Chemistries
These factors include:
Healthcare facility Purchasing or Material Management teams are tasked with finding the right cleaning chemistries for their facility's medical devices. These products have further implications than the cost of what is in the bottle. The cleaning of a medical device is vital to making them safe for use in patients, and a poor performing cleaning chemistry can negatively affect the useful life of the device being cleaned. Enzymatic cleaners are offered in various sizes and formulations by multiple companies within the healthcare industry. Purchasing any cleaning chemistries for a healthcare facility is typically done through a sales representative or distributor.